Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Takatoshi Senju, Tomonori Hoki and Jin Mizuguchi*

Department of Applied Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan

Correspondence e-mail: mizu-j@ynu.ac.jp

Key indicators

Single-crystal X-ray study
$T=93 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.100$
$w R$ factor $=0.350$
Data-to-parameter ratio $=10.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2,9-Dichloro-5,12-dihydroquino[2,3-b]acridine-7,14-dione

The title compound, $\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$, is an industrially important red pigment. The molecule has inversion symmetry. The molecule is not entirely planar, as shown by the dihedral angle of 176.7 (3) ${ }^{\circ}$ between the planes of the benzene ring at the center and that at the extremity. The molecules are stacked in a 'hunter's fence' fashion (i.e. when viewed from the side, the molecules cross one another with an angle of about 50° in a grid-like structure) along the a axis.

Comment

The title compound, (I), is known as a red pigment (Pigment Red 202; Herbst \& Hunger, 1997). The present pigment is widely used in practice, side by side with 2,9 -dimethylquinacridone (Pigment Red 122). The structure of PR122 was analyzed by Mizuguchi et al. (2002) and was found to possess a two-dimensional hydrogen-bond network based on $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds between the NH group of one molecule and the carbonyl O atom of the neighboring one. This structure is quite different from the ordinary threedimensional hydrogen-bond network of quinacridones, as characterized by a 'hunter's fence' structure, whereby one quinacridone molecule forms hydrogen bonds to four neighboring atoms. In the present paper, we report the structure of (I). Interestingly, the color of the single crystals of (I) is not red but black. In addition, the structure is very rare, because there are none of the intermolecular hydrogen bonds normally found in quinacridone pigments.

(I)

Fig. 1 shows an ORTEPIII (Burnett \& Johnson, 1996) plot of the molecule, which has inversion symmetry. The C5-C9/N1 ring (ring B) is significantly deformed, as shown by the bond lengths and angles given in Table 1. This deformation exerts a profound influence on the benzene rings adjacent to ring B (rings A and A^{\prime}). The dihedral angle between the planes of rings A and B is $177.9(3)^{\circ}$, while there is an angle of $176.7(3)^{\circ}$ between the planes of ring A and the $\mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 10^{\mathrm{i}} / \mathrm{C} 8^{\mathrm{i}} / \mathrm{C} 9^{\mathrm{i}} / \mathrm{C} 10$ ring [ring C; symmetry code: (i) $2-x,-y, 1-z$]. This tendency can also be recognized in the dimethyl analog (PR122). The extent of the deformation is, however, much less and the molecule is almost planar (Mizuguchi et al., 2002).

Fig. 2 shows the molecular packing, characterized by a 'hunter's fence' structure. The planes of the molecules form an

Received 4 March 2005 Accepted 9 March 2005 Online 25 March 2005

Figure 1
A view of the molecular structure of (I), showing 50% probability displacement ellipsoids for non-H atoms. The unlabeled atoms are related to the labeled atoms by the symmetry code $(2-x,-y, 1-z)$.

Figure 2
The molecular arrangement of (I). The molecules are arranged in a 'hunter's fence' fashion.
angle of about 50° when viewed from the side. There are short intermolecular contacts $\left[\mathrm{H} 1 \cdots \mathrm{H} 1 \mathrm{~N}\left(x, \frac{1}{2}-y, \frac{1}{2}+z\right)\right.$ of $1.99 \AA$ and $\mathrm{Cl} 1 \cdots \mathrm{O} 1\left(1-x, \frac{1}{2}+y, \frac{3}{2}-z\right)$ of 3.084 (6) \AA]. The former interaction corresponds to the contact in which two molecules (each of which stems from a different column) cross each other when viewed from the side. The latter interaction occurs on the extended vector of the $\mathrm{C}-\mathrm{Cl}$ bond toward the neighboring molecule in the next column. There are none of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds normally found in quinacridone pigments.

The crystal of (I) is black in color, largely because of excitonic interactions in the solid state, which are closely correlated with the molecular arrangement. The present interactions are typical of dyestuffs or pigments in which the extinction coefficient of the component molecule is high and the molecules are arranged periodically in the solid state (Mizuguchi \& Shikamori, 2004). Details on the correlation between the structure and the black color of the crystal of (I) will be published shortly elsewhere (Senju \& Mizuguchi, 2005).

Experimental

Compound (I) was purchased form Dainippon Ink and Chemicals Inc. and purified twice by sublimation using a two-zone furnace
(Mizuguchi, 1981). Single crystals were grown from the vapor phase in a closed system at about 773 K . After 24 h , a number of black needle-shaped crystals were obtained.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=381.20$
Monoclinic, $P 2_{1} / c$
$a=3.782(1) \AA$
$b=14.840(4) \AA$
$c=12.942(3) \AA$
$\beta=91.93(2)^{\circ} \AA$
$V=726.0(3) \AA^{3}$
$Z=2$

$$
D_{x}=1.744 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 4881
reflections
$\theta=3.0-68.1^{\circ}$
$\mu=4.20 \mathrm{~mm}^{-1}$
$T=93.1 \mathrm{~K}$
Needle, black
$0.40 \times 0.05 \times 0.02 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID imaging
plate diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.677, T_{\text {max }}=0.919$
6026 measured reflections

> 1222 independent reflections
> 745 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$
> $R_{\text {int }}=0.078$
> $\theta_{\max }=68.2^{\circ}$
> $h=-3 \rightarrow 3$
> $k=-17 \rightarrow 17$
> $l=-15 \rightarrow 15$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1985 P)^{2}\right. \\
+2.331 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.56 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 2$	$1.691(9)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.39(1)$
$\mathrm{O} 1-\mathrm{C} 7$	$1.24(1)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.44(1)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.39(1)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.48(1)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.30(1)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.47(1)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.39(1)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.47(1)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.39(1)$	$\mathrm{C} 8-\mathrm{C} 10$	$1.36(1)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.40(1)$	$\mathrm{C} 9-\mathrm{C} 10^{\mathrm{i}}$	$1.43(1)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.39(1)$		
$\mathrm{Cl} 1-\mathrm{C} 2-\mathrm{C} 1$	$121.5(7)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$119.6(8)$
$\mathrm{Cl} 1-\mathrm{C} 2-\mathrm{C} 3$	$117.6(7)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$119.5(8)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$121.5(8)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.8(8)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$122.8(8)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$119.0(8)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$123.4(7)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$118.5(7)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$117.6(7)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$115.7(7)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 5$	$119.4(7)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 10$	$121.7(7)$
$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 8$	$123.9(7)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$118.9(7)$
$\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10^{\mathrm{i}}$	$118.3(7)$	$\mathrm{C} 10-\mathrm{C} 8-\mathrm{C} 9$	$119.3(7)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.9(8)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10^{\mathrm{i}}$	$117.7(7)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$120.1(8)$	$\mathrm{C} 8-\mathrm{C} 10-\mathrm{C} 9^{\mathrm{i}}$	$123.0(7)$
$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$	$121.9(7)$		

Symmetry code: (i) $2-x,-y, 1-z$.

All H atoms were positioned geometrically and included in the riding-model approximation $[\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC \& Rigaku Corporation, 2004); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: CrystalStructure.

organic papers

References

Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. \& Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Herbst, W. \& Hunger, K. (1997). Industrial Organic Pigments, 2nd ed., pp. 454474. Weinheim: VCH.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Mizuguchi, J. (1981). Cryst. Res. Technol. 16, 695-700.

Mizuguchi, J., Senju, T. \& Sakai, M. (2002). Z. Kristallogr. New Cryst. Struct. 217, 525-526.
Mizuguchi, J. \& Shikamori, H. (2004). J. Phys. Chem. B, 108, 2154-2161.
Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC \& Rigaku Corporation (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Senju, T. \& Mizuguchi, J. (2005). J. Phys. Chem. B. In preparation. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

